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Abstract 
 
 

The Pearson correlation has been the conventional measure of dispersion matrix 

used in empirical factor analysis. It implies assumptions of normality of variables that are 

unlikely to hold for multidimensional analysis of social phenomena such as poverty. This 

paper reviews the basic essentials of factor analysis for ordinal and categorical data and 

proposes a framework for the specification of a factor analysis model for poverty data. 

Key features of factor analysis are recalled to bring more clarity in the interpretation of 

the results of a few data examples.  
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1. Introduction 
 
 

The study of multidimensional poverty involves the joint analysis of several 

variables. Making decisions based on more than one variable, however, poses some 

practical challenges such as those found in formulating policies to address an underlying 

characteristic that cannot be measured. Like most socio-economic manifestations, 

poverty is not directly measurable, though one would have little difficulty to recognize it. 

In studying multidimensional poverty in particular, one has to resort to several variables 

to attempt to describe and quantify its size and shape.  It is therefore conceivable to 

wanting to know if there is/are one or more underlying (theoretical) variable(s) that 

would explain the measures taken on the multiple variables. The unobservable – but 

estimated variable(s) could reasonably be used to measure poverty. Furthermore, as the 

number of variables gets larger, simply descriptive analysis such as ranking, and cross 

tabulations or groupings become too cumbersome or have no clear practical meaning. In 

these situations and, provided a minimal loss of useful information, it is a practical need 

to reduce the data to a lower-dimensional space for convenience in the analysis and in the 

interpretation of the data. These two problems/objectives address two different 

philosophical issues whereby the first model of the unobserved variable is known as 

factor analysis and the data reduction model in achieved through the method of principal 

component analysis. However, factor analysis and principal component analysis are 

essentially the same in practice, whilst the difference between the two methods has been 

subjected to considerable debates. 
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Multidimensional scaling is a family of tools used for transforming a set of points 

in a high-dimensional space to a lower-dimensional one while minimizing the loss of 

information in the data. There exist a wide range of techniques used in Multidimensional 

scaling among which principal components analysis and factor analysis (to a lesser 

degree) are the most widely used by social scientist researchers. These two techniques are 

in principle applicable exclusively to real valued continuous data notably since the model 

specification of these techniques basically amounts to the Single Value Decomposition1 

(SVD) of the multiple-correlation matrix of the variables.  Many variables used in the 

analysis of multidimensional poverty, however are non -normal. In many situations and 

for non-monetary variables in particular, variables are categorical or ordinal and often 

take values within a small range of discrete categories. In these situations, the 

contingency table of the variables is used in lieu of the correlation matrix and the 

assumptions of the factor analysis model based on the Pearson correlation matrix of the 

variables would be violated.   

 

There is a vast literature of the factor analysis with non-normal data which can be 

grouped under two broad lines of reasoning.  On the one hand, it is claimed that the 

parameter estimates of the standard model are robust enough to sustain non-normality 

                                                 
1 SDV: Any real matrix, A , has a unique Single Value Decomposition (SVD), which 
consists of three matrices, U ,∑  and V , whose product is the original matrix. The first of 
these, U , is composed of orthogonal columns known as the Left Singular Vectors, and 
the last, V , is composed of orthogonal rows known as the Right Singular Vectors. ∑  is 
diagonal and contains the singular values. The singular vectors reflect principal 
components of A , and each pair has a corresponding value, the magnitude of which is a 
function of the variance accounted for by the vector. If A  is symmetric and positive 
semi-definite, the left and right singular vectors will be identical and equivalent to its 
eigenvectors, and the singular values will be its eigenvalues. 
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(REF later). On the other hand, researchers have provided a large range of theoretical 

justifications for alternative model specifications in the presence of non-normality (REF 

later).  

 

The remainder of the paper is organized in 3 sections. Section 2 highlights the 

generalities and conceptual differences between factor analysis and principal components 

analysis and presents a hypothetical formulation of factor analysis of multidimensional 

poverty. Section 3 discusses the limits of the conventional factor analysis for categorical 

and/or ordered data. Alternative methods to adapt factor analysis to non-normal data 

proposed in the recent literature are broadly discussed. To fix ideas and to show 

relevance to the analysis of multidimensional poverty, a solution proposed by Pr. 

Bartholomew (1980) for factor analysis when all the variables are measured on an 

ordered categorical scale is reviewed with some mathematical details. Section 4 gives a 

more specific account of the data restrictions of multidimensional poverty data. Two 

alternative methods for fitting non-normal data to a factor model are discussed. First, a 

model for ordinal poverty data is formulated within the logic of the logit model proposed 

by Bartholmew. Second, the data are transformed in an attempt to achieve normality and 

are used in a standard factor model. The two approaches are compared on the basis of 

few data examples. The paper concludes with some practical suggestions for empirical 

work. 

 

2. Methods of factor analysis and principal component analysis: an 
overview 
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Factor analysis and principal component analysis are two commonly used 

methods to obtain a reduced-rank representation of a set of observed variables. Both 

methods attempt to approximate a set of points in a higher dimensional space with 

another set of points in a lower dimensional space while minimizing the loss of 

information. The information provided by a sample of observations can be viewed 

according to two broad categories of summary measured – the variances of the variables 

or the colinearity among the variables. Whether low-dimensional representation aims at 

retaining the maximum of variance or aims at fully accounting for the multicolinearity 

among the original variables is the basis of the difference between the two techniques.  

 

In algebraic terms, both factor analysis and principal component analysis start 

with a set of n  real valued vectors of dimensionality p  and the output is a set of n  

vectors with dimensionality q  where q  is smaller than p . The goal is for the relative 

distance between the final vectors to reflect the relative distances between the initial 

vectors as closely as possible. The mathematical formulation of this problem is thus 

function of the distance metric defined for measuring the pairwise distances in the 

original and final spaces, which can be either in terms of variance of the variables or in 

terms of their covariances.   

 

In addition to the instrumental choice of the distance measures to be compared 

between the initial space and its lower representation, the theoretical foundations 

underlying the two methods are very different (see for example: Journal of Consumer 

Psychology (2001), Velicer (1990), Widaman (1993)). Here we recall only the basic 
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essentials of the two techniques to help frame the discussion in the subsequent sections 

on the use and interpretation of factor analysis in empirical analysis of multidimensional 

poverty. 

 

One of the fundamental differences between principal component analysis and 

factor analysis is that principal component analysis is a purely analytical tool designed to 

reduce the dimension of the data without a prior supposition on the structure of the data 

or on the relationship among the variables. It is worth recalling the origin of principal 

component analysis to fit a subspace to a set of points in a higher dimensional space 

(Pearson 1901). Given n  points in a p dimensional space, denoted by the random 

matrix 
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Principal component aimed at transforming a set of points to a lower dimensional 

space can be formulated by finding the linear transformation of XTY '=  where T is a 

)( qp × matrix so that Y is q -dimensional such that X can be reasonably approximated 

byY . For practicality, and without loss of generality, the columns vectors qTTT ,...,, 21 are 

assumed to independent, implying that the transformed variables are uncorrelated. The 

predictive efficiency of Y for X then depends on the residual dispersion matrix of X after 

subtracting its best linear predictor in terms ofY . It is given that the smaller the values of 

the elements of the residual dispersion matrix ∑∑∑−∑ − '1' )( TTTT , the greater is the 
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predictive efficiency. Using the Euclidean norm of the residual dispersion matrix 

∑∑∑−∑ − '1' )( TTTT         (2.1) 

it follows from well established results of canonical reduction of matrices that the 

minimum of (2.1) is attained when qq PPPTTTT λλλ +++=∑∑∑ − ...)( 2211
'1' , 

where qλλλ ,...,, 21  and qPPP ,...,, 21 are the first q largest eigen values and associated eigen 

vectors of the matrix ∑ respectively and that (2.1) holds when the ith column vector of 

T is the vector associated with the ith eigen values of ∑ , that is ii PT =*  (see for example 

in text books on multivariate analysis). The transformed variables  ''
2

'
1 ,...,, qPPXP  are 

called the first q principal components of the random variables X . 

 

 In a more general form component analysis will be defined as any decomposition 

of the covariance matrix∑ . In principal component however, all variables are 

transformed to standard scores and the covariance matrix is now the correlation matrix R . 

The most basic interpretation of principal component follows from the following results: 

Under complete orthogonal transformation (e.g. when the original variables are 

orthogonal) from a p -dimensional space to another p -dimensional space, the sum of the 

variances of the variables, i.e. the trace ∑ , is invariant. That is,  

trace ∑ = trace ppp TTTTTTTT λλλ +++=∑++∑+∑=∑ ...... 21
'

2
'

21
'

1
' . 

It then follows that under the q -dimensional transformation )(qT  trace ∑  is 

approximated by trace ∑≤∑++∑+∑=∑ traceTTTTTTTT qq
qq '

2
'

21
'

1
)()'( ... . The first 
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q principal components are said to explain ).../()...(100 2121 pq λλλλλλ ++++++×  

percent of the total variance. 

 

In contrast to principal component analysis, factor analysis was developed to 

address a measurement issue (Journal of Consumer Psychology 2001). There has been 

considerable philosophical discussion on the essence of factor analysis variant theories in 

the literature. In most cases, and using the terms in a broad sense, a factor model posits 

the existence of one or more unobservable variables of interest (sometimes called the 

latent variables) that are empirically measured only through multiple, say p , manifest 

variables taken jointly. The measurements (on the p  manifest variables) taken on a 

number of subjects are then used to make the best estimation of the variables of interest 

(the latent variables) via the methods of factor analysis. The basic assumption in factor 

model is that the co-variability that is common to all measures is attributed to the 

underlying latent variables, also called common factors. Although the number of latent 

variables (say q ) conceivably can be of any value, the model is useful in practice only if 

q  is smaller than p . It is often debated as to whether latent variables are real or not, but 

they are mathematical constructs which can be used to simplify nature of 

multidimensional poverty data. 

 

 The nature of the approximation is similar to the one for principal component but 

there are some important conceptual differences in factor analysis. The aim is to 

investigate whether p random variables pXXX ,..., 21 , with dispersion matrix∑ , 



 9

can be approximated by linear functions of as few (dominant) factors as possible, say 

q factors. The basic foundation of the model is to conceive that there exist uncorrelated 

latent variables ,..., 21 FF , presumably infinite in number, such that  
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, in other words  AFX =     (2.2)  

 

It is seen that the number of observed variables p is smaller than the number of 

factors, and unlike principal component analysis, there is no unique solution to the 

problem. This problem is called factor indeterminacy and has been widely discussed in 

the literature (Velicer F. and Jackson D (1990), more references later). An advantage of 

the factor model compared to the component model that follows from the indeterminacy 

problem is that factor analysis is assumed to yield the same factors whereas component 

analysis is characterized as unstable under sampling variables. 

 

In the simplest form of factor analysis, equation (2.2) is truncated at the first q -th 

factors though to have the most dominant effect in explaining the collineariry among the 

observed variables. Thus, factor model will aim at approximating X  

by )()( q
q

q FAX = where qA is a matrix of the first q vectors of A in (2.2) and )(qF is the 

vector of the variables (factors) qFFF ,...,, 21 . Let us assume, without loss of generality, 

that the iF  ,...2,1=i have unit variance. Then the dispersion matrix of )(qX  is '
qq AA . 

Further, if the measure of the closeness between X and )(qX is defined by the Euclidean, 

i.e. '
qq AA−∑ ,  it turns out that factor analysis leads to principal component analysis, 



 10

and the parameters will be estimated by a similar method discussed above to give that 

),...,,( 2211
'

qqq PPPA λλλ= , i.e. the ith column of qA is ii Pλ , where iλ is the ith eigen 

value and iP  the associated eigen vector of ∑ .  

 

In a more general case of factor model, however, the measure of closeness is the 

amount of covariance between jXX ,1 explained by the q factors qFFF ,...,, 21 . Further the 

approximation X by )(qX assumes some error terms such that equation (2.2) can be 

written as:  
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++++=
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that is Ε+= )(qAFX         (2.4) 

 

A is called the matrix of factors loadings. It follows from (2.4) that Ψ+Φ=∑ 'AA or, 

'AAΦ=Ψ−∑ , where Φ  and Ψ  are the covariance matrix of )(qF  and of residuals Ε  

respectively.  The general formulation of the factor model is to approximate the 

covariance matrix in which a diagonal matrix of estimated unique variances ( Ψ ) is 

subtracted by a matrix of reproduced correlations, that is:  

*'ˆ
fAA ∑=Φ≅Ψ−∑          (2.5) 

 

Because the rational in factor analysis is to express the variance shared among the 

p observed variables, the diagonal elements of ∑ now represent the communality 

between the variables, often measured (or estimated) by the squared correlation for each 
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variable being predicted by all other (p-1) variables. The jth diagonal element of *
f∑ is 

thus the common variance of the jth variable that is presented by the factor solution. 

 

 The optimum choice for *
f∑ will be such that the off diagonal elements of 

correlation matrix of the residual *
f∑−∑ are as small as possible and are comparable with 

the sampling errors of the original correlations. The estimates of the coefficients 'AAΦ are 

not trivial in practice and it is often assumed that qFFF ,...,, 21  and qeee ,...,, 21 are 

independent from one another. It further can be assumed without loss of generality that 

the factors have unit variance and thus Ι=Φ  (the identity matrix). There are more 

unknowns than equations in the system of equation in (2.3) and the solution can only be 

derived by an iterative method. Jowett (1958) provides a simple illustrative example of 

the estimation involving one factor model. The procedure starts with a correlation matrix 

of the observed variables in which the 1’s in the diagonal are replaced by the square 

coefficients of the factors loadings for the single factor. Equating∑  with 'AA  thus gives 

the system of equations 
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Several procedures are used in practice to fit ∑  to A , Φ  and Ψ , including the 

maximum likelihood (ML),  the unweighted least squares (ULS) and the generalized least 

squares (GLS) techniques. Detailed description of these techniques and their relative 

advantages are documented in a wide range of text books or research work (e.g. 

Anderson 1959, Joreskog and Goldberg 1972). All these estimation techniques are based 

on a normality assumption of one sort or another. In the ML case for example, it is 

generally assumed that the residuals in (2.4) are normal distributed, i.e. Ε  ~ ),0( ΨMVN  

and that )(qF ~ ),0( ΦMVN  such that X ~ ),0( ∑MVN .  

 
 
 
3. Fitting function and correlation matrix in factor analysis of 

categorical data: Pitfalls and alternatives 
 

The most commonly used fitting method in (confirmatory) factor analysis is the 

Maximum Likelihood (ML) that uses the standard product-moment correlation. The 

limits of the Pearson correlation, however, have been discussed by many researchers. 

Babakus E., Ferguson C and Joreskog G. (1987) provide a critical review of the research 

work on the adequacy of Maximum Likelihood theory which is for the most part based 

on continuous data meeting normality distributional assumptions of the data. One of the 

themes of this work has been the (mis)use of the Pearson correlation matrix to analyze 

data that do not satisfy the distributional assumption. Recent research has been concerned 

with the ordinal data and in particular for instance when the observed variables are 

dichotomous. 
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To fix ideas, it is useful to start with a presentation of the model in a general case. 

Let Y be the underlying variables that we believe explain the observed variables X. The 

distributions f (x) and g(y) are related by   

dyygyxxf )()|()( ∫
ℜ

= π           (3.1) 

where )(xf  is the probability mass of X and )(yg   is the density of Y. This is 

traditionally known as a latent structure model in which X in called the manifest variable 

and Y the latent variable thought to be continuous.  

 

When the observations are all categorical x  will identify a cell of the multi-way 

contingency table and )(xf  its multinomial probability. Under conditional independence 

(meaning that the observed dependence among the x ’s is wholly explained by their 

dependence on the y ’s), we can write: 

)|()|(....)(
11

yxdyyxxf ii

p

iii

p

i
ππ

=
ℜ

=
ℜ

ΠΕ=Π= ∫ ∫       (3.2) 

Following Bartelemew (1980), we let x ’s take value 0 or 1 and have that  

)1,0(,)}(1{)}({)|( 1 =−= −
i

x
i

x
iii xyyyx ii πππ      (3.3) 

It is shown that iπ  is the value of )(yiπ  when 
2
1=jy  for all j . It therefore represents 

the “typical probability” of response in the i th dimension. In this case, equation (3.2) can 

be written as:   

dyyyxf ji )()...(....)( ππ∫ ∫
ℜ ℜ

=         (3.4) 
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In order to formulate the factor analysis model for the dichotomous case, we start by 

expressing the conditional distribution of y given x  

ii x
i

x
i

p

i
yyxfyxfxyp −

=
−Π== 1

1
)}(1{)}({)(/)|()|( ππ     (3.5) 

Bartlelemew gives an interpretation of (3.5) when y is uniform in (0,1). Under this 

condition,  )|( xyrΕ  is the expected proportion of the population below an individual 

with observed value x , and, by definition, )|( xyrΕ  is the y-score of the individual on 

dimension r . 

 

The y-score’s can thus be estimated by evaluating the integrals  

dyyyy jir∫ ∫
1

0

1

0

)().(.... ππ         (3.6) 

The goodness of fit for this model is defined as a linear transformation of the log-

likelihood  )|(ln2 ii
i

i EOO∑=Λ         (3.7) 

where iO  and iE  are the observed and expected frequencies and the sum is over all cells 

of the contingency. Let 0Λ  be the value of (3.7) when the expected frequencies are 

calculated on the assumption of complete independence and qΛ  when they are obtained 

by fitting a model with q variables. The ratio 0/)( ΛΛ−Λ qo  represents how much 

departure from independence is accounted for by the model. If the method of fitting the 

model provides efficient parameters then Λ  can be shown to have a 2χ -distribution with 

( )12 '' −− Pp  where 'P  is the numbers of parameters and can be used to judge the 

goodness of fit of the model. 
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As an example, we review below the main inputs to the fitting functions based on 

the logit model developed by Barthelemew in Barthelemew (1980). The parameters ( iπ ) 

are estimated by an iterative approach on the basis of two core mathematical results:  

First,  s
R q

k
jkik

ij '
1

1
2 ξσα

σ
+=

−
∑

=

      (3.8) 
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ij ππππ
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=   is the cross product ratio formed 

from the expected frequencies when the table is collapsed over all dimensions except 

i and j , 289.3)}1/({(log22 =−Ε= yyσ , and  s'ξ  are terms of 4th degree in ikα  and jkα , 

Second, ∫ −−+
=

1

0 )1)(1(
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π

, ),...,2,1( pi =     (3.9) 

where iN  is the number of positive responses on dimension i. The sample cross-product 

ration can be used to estimate ijR .  For the case of a one factor model )1( =q , expression 

(3.8) yields s
R

ji

ij '1
1

2 ξ
αασ

+=
−

. Thus the aim in the approximation is for the ratio 

ji

ijR
αασ 2

1−
 to be close to 1.  

 

[Aside: Using the logit first approximation, equation (3.9) is re-written using a normal 

approximation   

)}/()ˆ1{(ˆ 12
1

2 NNiii
−Φ+Φ≈ απ       (3.10) 
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The iteration procedure amounts to the following steps: 

1. Find the vector of s'α  such that jiαα  is close as possible to the estimated value of  

 2

1
σ

−
= ij

ij

R
c  for pji ,...,2,1, =  ji ≠  

2. find π  by equating )(yiπΕ , ),...,2,1( pi =  to the corresponding marginal proportion 

using the vector α  obtained in step1 

3. improve the estimate of α  by writing ijjiijc θαα=  where 
ijθ is assumed to have a 

weak link with iπ , jπ , iα  and jα  but will usually be close to 1. The new (improved) 

estimate of α  will then be obtained by replacing the starting values ijĉ  by ijijc θ/ˆ   

4. repeat steps 2 and 3 until π  and α  (or Λ ) converge.] 

 

The issue as to which of the correlation matrix should be used as input to the 

factor analysis of discrete ordinal data in the general case has been widely researched 

subsequent to Barthelemew (1980). Several arguments consistent with those of the 

dichotomous case have been advanced against the Pearson correlation.  More generally, 

discrete and ordinal data do not necessarily produce positive definite correlation matrices 

and factor analysis parameter estimates based on the Pearson’s correlation will be biased 

and model fit severely distorted (Johnson and Creech 1983 and others). In many 

situations in multidimensional poverty, and for non-monetary variables in particular, 

variables are categorical or ordinal and often take values within a small range of discrete 

categories. In these situations, the contingency table of the variables is used in lieu of the 

correlation matrix. 
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 There are several methods for defining a correlation between two variables from 

a frequency table. The polychoric correlation introduced by Ritchie-Scott (1918) and 

Pearson and Pearson (1922), is computed from a polychoric table which is a table of 

more than 2X2 cells and fewer than 4X4 cells. It has been shown that the polychoric 

correlation coefficient, calculated from ordinal transformation of bivariate normal 

variables is an unbiaised estimate of the correlation between the original bivariate 

variables (Rigdon and Ferguson 1991, pp491). Rigdon and Ferguson confirmed the 

findings of the studies by (Joreskog and Sorbom1981) that the polychoric correlation 

coefficient is a better measure of correlation for ML factor analysis of ordinal data. They 

showed that, on the basis of factor loading bias and squared errors of the ML solution, the 

polychoric outperformed other alternative correlation measures including the Pearson’s 

(product-moment) correlation, the Pearson’s rho and the Kendall’s tau.  

 

A major drawback of the polychoric correlation, however, is that it produces poor 

fit statistics of the ML. Nonetheless, recent development in the work by Barbakus, 

Ferguson and Joreskog 1987, Joreskog and Sorbom in Joreskog and Sorbom1981 

suggests that the use an unweighted least squares (ULS) solution will improve the fit 

statistics when the estimation is based on the polychoric. 

 

 

4. Some data examples. [ Under development] 
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In this Section we emulate the method proposed by Bartholmew to fit a logit 

model to dichotomous poverty data. We follow the line of more recent research and use 

the polychoric correlation with the ULS. We also fit the standard factor analysis based on 

the Pearson correlation and ML. In the last model however, rather than using the standard 

Z-scores of the observed variables, we use a U-score transformation introduced by 

Kamanou and Doksum 2002, which has been shown in the context of principal 

component analysis to attenuate the bias in the correlation coefficient when categorical 

variables are skewed . The data used in this analysis are the most recent household survey 

data from three West African countries including Sierra Leone, Gambia and Senegal. 

Since our primary objective in an exploratory factor analysis of multidimensional poverty 

data, we compare three methods (of combination of fitting function and alternative 

correlation matrix) on the basis of parameters estimates parameters rather than fit 

statistics. 

 

[The remainder of this section is under development] 

 

 

5. Conclusion  [ To be written] 
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