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1. Introduction

This technical note aims to present succintly the use of a particular factorial
technique, Multiple Correspondence Analysis (MCA), in the area of
multidimensional poverty measurement. We will not come back on conceptual
issues, on the choice of poverty indicators, and will not review other
approaches found in the literature2. Neither will we present the statistical
foundations of the basic factorial techniques, found in plenty of texbooks. We
will rather highlight some characteristics of MCA which make it particularly
attractive for the measurement of multidimensional poverty in view of poverty
comparisons across space, time and socioeconomic groups.

We adopt a two-step approach, the first being the construction of a composite
indicator from multiple primary poverty indicators, the second being the
computation of  poverty indices with the composite indicator. Obviously we
focus here on the first step, the most challenging, the second being
analogous to well-known techniques developed within the field of univariate
moneymetric poverty analysis.

Numerical applications of our approach are given in some case studies
presented in the third part of this same conference.

2. Data reduction techniques, PCA and specificity of MCA
Let's first introduce some notation.
On a population U of N  population units Ui, K primary indicators Ik are
measured, K>1. These indicators are possibly  heterogenous in their nature:

 quantitative indicator, e.g. household income, number of bicycles, etc.
 qualitative or categorical

 ordinal, e.g. level of education, etc
 non ordinal, e.g. occupation, geographical region, etc.

We assume here that they are either quantitative or categorical ordinal.

The first step consists in defining a unique numerical indicator C as a
composite of the K primary indicators Ik, computable for each
population unit Ui, and significant as generating a complete poverty
ordering of the population U.

Let's observe that the term "population unit" can refer as well to individuals
and households as to villages, regions, countries.

For the discussion, it is important to clarify the terminology regarding the
three concepts of  poverty indicator, poverty measure and poverty

                                           
2 See Asselin L.-M. and Dauphin A. (1999), Asselin L.-M. (2002)
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index. Let Iik be the value of indicator Ik for the elementary population unit
i. Iik is then properly a poverty indicator value. The value Iik can be
transformed as gk(Iik), with the function gk, to better reflect a poverty
concept relative to indicator Ik. This is frequently the case especially with a
quantitative indicator Ik to which is associated a poverty threshold (poverty
line) zk. In that case, well-known transformations are gk(Iki)=( zk- Iik)a .
Then,  gk(Iik) is called a poverty measure value, again defined on each
elementary population unit. In the particular and also frequent case where
the function gk is the identity function, the poverty indicator and the poverty
measure are the same. Finally, poverty measure values can be
aggregated over the units for the whole population U, as Hk{gk(Iik), i=1, N}.
Then Hk is called a poverty index relative to the indicator Ik for the
population U. Obviously, this index Hk can be defined on sub-populations.

It is important to keep in mind that the three concepts indicator, measure
and index are relative to the definition given of population unit, so that a
household-based index, for example, can be considered as a village
indicator when considering a population of villages for which this index
exists, and so on.

A composite poverty indicator C takes the value Ci(Iik, k=1,K) for a given
elementary population unit Ui.

2.1 Data reduction  and PCA as a basic technique

Any composite indicator is necessarily a reductive variable since it tries to
summarize K variables into just one. Statistical methods known as
"factorial" techniques have precisely been designed since a long time as
efficient data reduction techniques, essentially descriptive, whence the
idea to look at them as potentially appropriate for solving the problem of
our first step.

The basic optimal data reduction process comes from the Principal
Component  Analysis. Essentially, it consists in building a sequence of
uncorrelated (orthogonal) and normalized linear combinations of input
variables ( K primary indicators), exhausting the whole variability of the set
of input variables, named "total variance" and defined as the trace of their
covariance matrix, thus the sum of the K variances. These uncorrelated
linear combinations are latent variables called "components". The
optimality in the process consists in  that the 1st component has a maximal
variance l1

2, and all subsequent components a have decreasing variances
la2 whose sum is the total variance of the K indicators. This total variance
is also named the total inertia of the distribution of the K indicators. The
stepwise reduction process just described, computationally equivalent to
eigenvalues and eigenvectors identification, corresponds geometrically to
a change in the cartesian axis system (translation and rotation) of the k
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dimension euclidean space Rk. It is neutral regarding the orientation of the
factorial axis. The variances la2 are in fact the eigenvalues relative to the
factorial axis determined by the eigenvectors.The whole process relies on
analysing the structure of the covariance matrix of the K initial variables.

The 1st component F1 is an interesting candidate as the composite poverty
indicator C, but it must satisfy obvious consistency conditions on which we
come back below. C has the following expression for the population unit i:

∑
=

=
K

k

k
i

k
i IWC

1

*,1 .                                (1)

The kI * are the standardized primary indicators. The factor score
coefficients W1,k must have signs consistent with the interpretation of the
1st component as a poverty indicator. At the end of the process, it comes
out that the Wa,k are in fact the usual multiple regression coefficients
between the component  Fa  and the standardized primary indicators. Built
this way, the 1st component, if acceptable as the composite indicator, C,
can be described as the best regressed latent variable on the K primary
poverty indicators. No other explained variable is more informative in
terms of poverty. The set of coefficients W1,k , i.e. the weights given to the
primary indicators, can be seen as expressing the social choice for poverty
reduction, in terms of the (basic) goods  measured by the K primary
indicators.

Interesting as it is, the PCA technique has some limitations:

a) the whole technique has been developed for a set of quantitative
variables, measured in the same units3. The optimal sampling
properties for parameter estimation depends on the multivariate
normal distribution and no more exist with qualitative variables;

b) the operationalization of the composite indicator, for population
units not involved in the sample used for estimation, is not very
appealing since weights are applicable to standardized primary
indicators.

Since concepts of multidimensional poverty are frequently measured with
qualitative ordinal indicators, for which PCA is not a priori an optimal
approach,  looking for a similar but more appropriate factorial technique is
justified. Here comes naturally into the picture Multiple Correspondence
Analysis (MCA), designed in the sixties-seventies precisely to improve the
PCA approach, when this one looses its parametric estimation optimal
properties.

                                           
3 T.W. Anderson (1958), p. 279.



4

2.2 Specificity of MCA

From now on, we will assume that the K primary indicators are categorical
ordinal, the indicator Ik having Jk categories. It's a very general setting,
applicable to any mix of quantitative and qualitative poverty indicators,
since a quantitative variable can always be redefined in terms of a finite
number of categories. Let's associate to each primary indicator Ik the set of
Jk binary variable 0/1,  corresponding each to a category of the indicator.
We introduce the following notation:
• X(N,J) : the matrix of N observations on the K indicators decomposed

into Jk variables, where ∑
=

=
K

k
kJJ

1
 is the total number of categories. X

is named the indicatrix matrix.
• Nj : the absolute frequency of category j, i.e. the sum of column j of X
• N': the sum of the elements of matrix X, i.e. NµK
• 'N

N
j

jf = : the relative frequency of category j

• 
)(
),(

iX
jiXf i

j = , where X(i) is the sum of line i of the matrix X. The set

{ }Jjff i
j

i
J ,1, ==  is named the profile of observation i.

MCA is a PCA process applied to the indicatrix matrix X, i.e. to the
set of the J binary variables in the RN space, but with the 2χ - metric
on row/column profiles, instead of the usual Euclidean metric.

The 2χ - metric is in fact a special case of the Mahalanobis metric
developed in the thirties and used in Generalized Canonical Analysis. It
takes here the following form, for the distance between two observation
profiles i and i' in the RJ space:
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The only difference with the Euclidean metric lies in the term 










jf
1 , by

which smaller categories receive a higher weight in the computation of
distance.

The difference between MCA and PCA shows up particularly in two
properties which seem highly relevant for the poverty meaning of the
numerical results.

Property #1 (marginalization bias)



5

MCA is overweighting the smaller categories within each primary
indicator. In fact, we have:
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Thus, in the case of a binomial indicator, the marginal category will
receive a higher weight, since the covariance is the same for both
categories.

In terms of poverty, if we think of  (extreme) poverty in a given
society as being more relative than absolute and characterized by
social marginalization, i.e. by the belonging to a minority  group
within the population, the group of people characterized by a
poverty category jk, then this category will receive more weight or
consideration in the computation of a composite indicator of
poverty. If, as above, we interpret the factorial weights (regression
weights) as expressing the social choice in poverty reduction, then
these highly weighted poverty attributes represent those which this
society try to eliminate in priority.

Property #2 (reciprocal bi-addivity) or (duality)

The way it is defined, MCA can be applied on the indicatrix-matrix
either to the row-profiles (observations) as to the column-profiles
(categories), and then it has the following remarkable and unique
duality property:
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Let's assume, for example, that the first factorial axis meets the
consistency conditions to be considered as a poverty axis4 and that we
can take as the composite indicator of poverty i

i FC 1= .
Then the duality relationships stipulate:

(4a): the composite poverty score of a population unit is the simple
average of the factorial weights (standardized) of the K poverty categories
to which it belongs.
(4b): the weight of a given poverty category is the simple average of the
composite poverty scores (standardized) of the population units belonging
to the corresponding poverty group.

We think that these both properties, and especially (4b) for the reciprocal
bi-addivity, are quite relevant for the poverty meaning of the numerical
results coming out of this specific factorial analysis, MCA. That's why we
explore more attentively in the following section a research strategy in
applying MCA to the problem of measuring multidimensional poverty.

3. MCA applied to defining a composite indicator of multidimensional
poverty

3.1 A fundamental consistency requirement

We have now to look more closely to the conditions under which the
factorial approach, and especially MCA, can really generate a relevant
composite indicator of multidimensional poverty. We could have here a full
axiomatic formulation so that the objective of poverty comparison is
satisfactorily met. But with a two-step approach, the axiomatic
requirements can be largely simplified. If the first has provided a relevant

                                           
4 We come back below on these consistency conditions.
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composite poverty indicator, the axiomatic requirements for the second
step, regarding the computation of aggregated poverty indices, can rely on
standard requirements now generally accepted in the case of
unidimensional poverty measurement, especially for the well-known case
of moneymetric poverty. For the first step, the construction of a composite
indicator C from K ordinal categorical indicators Ik, there is at least the
following requirement:

Monotonicity axiom (M)5

The composite poverty indicator  must be monotonically increasing
in each of the primary indicators Ik.

The axiom just means that if a population unit i improves its situation for a
given primary indicator Ik, then its composite poverty value Ci increases: its
poverty level decreases.

Let's see what it means if we intend to take the first factorial component F1

as the composite poverty indicator C. From (4a) above, its expression
would then be:
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To simplify, let's write 
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the factorial axis a. Then we have:
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The monotonicity axiom translates into two requirements:

M1: First Axis Ordering Consistency (FAOC-I) for  indicator Ik

For any indicator Ik, for which the ordering relation between
categories is noted <k,  the  ordering relation <w   of the weights

k
jk

W ,1*  must be equivalent to either <k or to >k.

M2: Global First Axis Ordering Consistency (FAOC-G)

                                           
5 We assume that the sign of the composite indicator is chosen (see above the neutrality of the
factorial process for axis orientation)  so that a larger value means less poverty, or, equivalently,
a welfare improvement and that the ordering relation A < B between two categories A and B of
the same indicator means that B is preferable to A.
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For all indicators Ik, the FAOC-I condition is fulfilled with the same
orientation: the  ordering relation <w is equivalent  to either <k  for all
indicators or to >k for all.

If and only if the monotonicity axiom is satisfied  can 1FC =  be taken as a
composite poverty indicator. But then the reciprocal bi-addivity property of
MCA gives a very interesting consistency result for Ci. Due to (4b) which says
that the weight of an  indicator category, k

jk
W ,1 , is given by the average

composite poverty score of the population group of size 
kj

N  having the
category (attribute) jk, we can state the following property of C :

Composite Poverty Ordering Consistency (CPOC)

With  1FC = acceptable as composite poverty indicator, let the population
group 

1j
P  have  a category j1 of Ik  inferior to category j2 possessed by the

group 2jP . Then the group 
1j

P  is also poorer than 2jP  relatively to the
composite poverty.

In other words, the population ordering for a primary indicator Ik is preserved
with the composite indicator. This is a remarkable consistency property
specific to MCA, due to the dual structure of the analysis.

Clearly, there is no guarantee that MCA runned on the K primary indicators
will come out with the FAOC property, and then using the first factorial
component as the composite poverty indicator would be inconsistent and not
acceptable. In fact, everything depends on the structure of the covariance
matrix X'X6.

There are two ways of overcoming this unpredictable difficulty: minor
adjustments to the set of the K primary indicators, or exploiting more than one
factorial axis.

3.2 Adjustments to the set of the K primary indicators

It should be noticed first that a binomial indicator meets always the FAOC-I
requirement. For a multinomial indicator not satisfying this requirement,
sometimes regrouping some categories can achieve the FAOC-I. If this
operation does not succeed, a more radical one is to eliminate the indicator.
Obviously, if the primary indicators have been carefully selected, defined and
tested, this is a high price to pay just for satisfying a technical condition. We
do not favour the elimination of indicators, but it becomes more acceptable

                                           
6 We write here X for the matrix of centered variables.
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when the number of indicators K is large and there appears some duplication
in a specific area of poverty.

If all indicators satisfy FAOC-I, but  FAOC-G is not met, it means that
relatively to the first factorial axis there are two subsets of indicators with
opposite ordering on this axis, thus negatively correlated.  Two such disjoint
subset of indicators will always be the situation with K binomial indicators, the
situation met particularly with the now very popular approach of asset poverty
measurement. In this last case, there is no consistency problem if one of the
two subsets is the empty subset «, which is not unusual. Let's assume that
both subsets are not empty.  It means that the multivariate measurement of
poverty cannot be shrunk into an unidimensional poverty measurement, and
that in spite of existing correlations, the poverty concept reflected in the K
chosen indicators is really deeply multidimensional. The only way to get out
of this inconsistency would be to eliminate one of the two subset of indicators,
which a priori does not seem acceptable: the information loss would then be
too important. We need a more appropriate research strategy.

3.3 A research strategy using more than the first factorial axis

We need some more tools to design a research process more developed than
considering just the first factorial axis. Let L be the number of factorial axis,
determined by the rank of the matrix X. We have L§ J-K, where J is the total
number of categories for the K indicators.

Let 
N

WN
k

k

kk

J

j
ljk

k
j

k
l

∑
==∆ 1

2
,,

   (6)

be the discrimination measure of indicator Ik on the factorial axis l. It is in fact
the variance of the distribution of the  categorical weights on axis l, since the
average weight is always 0.

We know from the theory of MCA that

K

K

k

k
l

l

∑
=

∆
= 12λ (7) ,

i.e. the eigenvalue of axis l is the average of the discrimination measures.

It follows from the basic factorial equation

∑
=
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l
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2Inertia Total λ   (8)

 that we have the equation below:
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Total Inertia Decomposition
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In the case of MCA, it is shown that 1−=
K
JItot , i.e. the average number of

categories per indicator, minus 1. If all indicators are binomial, the Total
Inertia is precisely 1.

Let's also write { }K,....,2,1=κ , the set of integers from 1 to K.

We will now generalize the preceding approach to the composite poverty
indicator.
For each factorial axis l, we can idenfify one or more subsets of indicators,
each subset satisfying the Axis Ordering Consistency condition (AOC), i.e.
both requirements AOC-I (4a) and AOC-G (4b), which now no more refer only
to the first axis. The worst situation is when, for a given axis l, no indicator
meets AOC-I, and then there is just one subset, the empty subset «. Among
these AOC subsets, we retain the one whose sum of discrimination measures
is maximal. We will then consider that there is a poverty dimension specific to
axis l if and only if the sum of discrimination measures of  this AOC-subset
represents the larger part of the total discriminating power of axis l, i.e. is
larger than 50% of 2

lK λ× . To each factorial axis l, we can thus associate a
unique subset of the K indicators, whose indices are a subset κκ  of l , so
defined:

 Poverty Dimension Set of axis l

The Poverty Dimension Set of the factorial axis l, { }
lkkI κ∈ , is the most

discriminating subset of AOC indicators satisfying 22 l
k

k
l K

l

λ
κ

>∆× ∑
∈

.

It should be clear that the set { }
lkkI κ∈ can be empty, which means that the

factorial axis l does not represent any poverty dimension.

It should be clear also that the poverty dimension sets are not necessarily
disjoint: an indicator can belong to many of them. The potential intersection
between these sets can be eliminated by a sequential process starting with
the first axis and continuing with the others as ordered by MCA, since the
discriminating power of each axis is decreasing. The way to eliminate these
intersections, while trying to retain at each step the maximal inertia, is
naturally coming out of  the total inertia decomposition (9): at each step, we
keep a given indicator k into the poverty dimension set where its
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discrimination measure is larger. We refer to this sequential process as to the
algorithmic identification of independent poverty dimensions, more simply the
poverty dimensions algorithm. Let then ll κκ ⊆*  be the subset of indicator
indices at step L*¥1 in the sequential process.

Normally, to insure that the process retains a maximal proportion of Itot in the
disjoint poverty sets, the algorithm must be pursued until L*=L. We then have
built a complete sequence of poverty dimension sets.

Complete sequence of poverty dimension sets

The sequence of disjoint subsets of indicators { }
lkkI *κ∈  resulting from the

application of the poverty dimensions algorithm until L*=L, is called a
complete sequence of poverty dimensions sets. The number d of non empty
subsets is the number of independent poverty dimensions provided by the set
of the K primary indicators.

Two cases are then possible: all K indicators belong to the sequence, i.e.

κκ =
=
U

L

l
l

1

* , or some indicators are not retained from the process. In this last

case, they should simply be eliminated from the search of a composite
indicator: on no factorial axis they meet the minimal consistency requirement.

The poverty dimensions algorithm can rapidly become quite demanding with
a large number K of primary indicators, let's say K¥ 10, which is not unusual
in applied multidimensional poverty. As an example, with 10 indicators having
in average 3 categories, the process could involve the analysis of  L=20
factorial axis. Even if all well-known softwares allow such an analysis, with
some tedious work for the analyst, to facilitate the operationalization, it seems
better to introduce the possibility of interrupting the algorithm when some kind
of ideal situation is met, we mean when all  K indicators appear in a sequence
of disjoint poverty sets. We are thus taken to the following definition:

Minimal sequence of complete poverty dimension sets

 A minimal sequence of complete poverty dimension sets is obtained when
the poverty dimensions algorithm is interrupted at the smallest value L*§L for

which either κκ =
=
U

*

1

*
L

l
l  , i.e. all indicators are included in the sequence of

disjoint poverty sets, or L*=L.

Here also, the number d of non empty subsets is the number of independent
poverty dimensions provided by the set of the K primary indicators.
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It should be noticed that this definition allows, in particular, for stopping the
process to the 1st factorial axis  if is met the situation considered above, i.e.
when the FAOC condition is achieved.

We can now give, from (5a), a generalized definition of the composite poverty
indicator, which can be applied when the first factorial axis does not meet the
FAOC requirement.

Generalized definition of the composite poverty indicator

Let a minimal sequence of complete poverty dimension sets be obtained,
which is always possible with the poverty dimensions algorithm. Then the
value Ci of the composite poverty indicator for the population unit i is given by:

K

I
W

C

L

l

k
ji

k

J

j l

kl
j

i

k

l

k

k

k∑∑∑
= ∈ =

=

*

1
,

1

,

*κ λ
(10)

Definition (5a) is the special case where L*=1: all K indicators belong to the
poverty dimension  subset of the factorial axis 1. This is the case where the
multivariate measurement of poverty can be logically reduced to one
aggregate poverty dimension, due to the structure of the correlation matrix: all
K indicators are positively correlated.  In the general case, there is more than
one poverty dimension, in fact one for each poverty set, and the way to
aggregate them is suggested by the structure of (5a) and the fundamental
equation of decomposition of the total inertia (9): instead of picking up the Jk

weights attributed to the indicator Ik only from the set of weights provided by
the first factorial axis, it takes them from the axis which define the poverty
dimension subset to which it belongs.

It should be remarked that the two very relevant properties of MCA, the
marginalization bias (3) and the reciprocal bi-additivity, especially (4b), are
valid in each of the L* axis involved in the generalized definition and thus
keep their meaning, in the relevant poverty dimension l, for the interpretation
of the categorical weights of the *

lκ  indicators defining this dimension. Also,
the composite poverty ordering consistency remains valid for each identified
poverty axis, with obvious adaptation.

The whole generalization approach must be viewed as an effort to not
obliterate, rather to highlight, the deep multidimensional poverty structure
hidden in the K-variate measurement of poverty, and at the same time to
integrate into the composite poverty indicator a maximal information from the
full information contained in the K primary indicators, as measured by the
Total Inertia.
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4. Conclusion

We have tried to highlight here some relevant characteristics of a specific
factorial technique, Multiple Correspondence Analysis (MCA), in view of
constructing a composite poverty indicator from K primary indicators. This is
the first of a two-step approach to indices of multidimensional poverty. The
context deliberately chosen refers to an unspecified number K¥2 of
categorical-ordinal poverty indicators, a quite frequent situation in the area of
multidimensional poverty measurement.

Relatively to our problem, the common feature of factorial techniques consists
in taking the first factorial component as the composite poverty indicator. It is
the best  latent variable regressed on the primary indicators, and thus, under
the restriction of consistency, the corresponding factor-score coefficients
(indicator weights) can be seen as expressing the social choices of a given
population in trying to get out of poverty. Starting from the basic
characteristics of factorial analysis well-known from the founding technique,
Principal Component Analysis (PCA), but also from the fact that PCA has
been developed essentially for quantitative variables, the main MCA
characteristics here highlighted are:

a) Property #1: the marginalisation bias, expressed in equation (3) for the
categorical weights,

b) Property #2: the reciprocal bi-additivity, or duality, expressed in
equations (4a) and (4b).
From these two properties, categorical MCA weights receive an
interesting and relevant meaning in terms of poverty groups.

c) The Composite Poverty Ordering Consistency coming out of the FAOC
requirement (First Axis Ordering Consistency) resulting from the
Monotonicity Axiom.

In view of preserving as much information as possible when the FAOC
requirement is not met, we propose here an algorithmic process, the
algorithmic identification of independent poverty dimensions, which allows a
generalization of the preliminary definition of the composite indicator based
uniquely on the 1st factorial axis. This process makes explicit the
multidimensional poverty structure of the K primary indicators, by the
identification of d disjoint non-empty subsets of poverty indicators, defining as
many independent poverty dimensions. The algorithm operationalizes in a
systematic and finite computation process the well-known power of all
factorial techniques in terms of graphical analysis as revealing the deep
structure of multidimensionality.

The main danger which threatens factorial approaches to multidimensional
poverty measurement is a simplistic treatment intentionally reduced to the first
factorial axis only, since it could imply a high information loss. We think that
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the generalised MCA definition proposed in equation (10) helps to overcome
this threat and constitutes an honest and relevant candidate as a composite
indicator of multidimensional poverty.
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