BOLSA FAMÍLIA, OCCUPATIONAL CHOICE
AND INFORMALITY IN BRAZIL

Ana Luiza Neves de Holanda Barbosa
Carlos Henrique L. Corseuil
Institute for Applied Economic Research (IPEA)
ABSTRACT

This study analyses the impact of the conditional cash transfer programme, Programa Bolsa Família, on the occupational composition of the Brazilian labour market. The methodology relies on a discontinuity in the programme eligibility rule regarding children’s age to attain the identification of a LATE parameter. The analysis is carried out with 2006 microdata from the National Household Sample Survey (PNAD). Our results suggest that the cash transfer does not affect the occupational choice of Brazilian adults among formal and informal jobs.

Keywords: Income transfer, informal labour, regression discontinuity design.

JEL Codes: I38, O17.

1 INTRODUCTION

The Programa Bolsa Família (PBF) is a conditional cash transfer (CCT) programme which aims to improve the welfare of poor families. There are programmes with similar characteristics to the PBF in several developing countries, both inside and outside Latin America. In some countries, such as Brazil, the programme coverage is quite extensive. For example, in 2013, the PBF had already benefited more than 13 million households. In this context, some concerns are raised regarding possible deleterious effects of this CCT on the labour supply of adults.1

* Researcher from the Department of Social Studies and Policies (Disoc) at Institute for Applied Economic Research (IPEA). Email: ana.barbosa@ipea.gov.br.
** Researcher and Deputy Director of Disoc at IPEA. Email: carlos.corseuil@ipea.gov.br.

The authors would like to thank Sergei Soares for several explanations on the inner workings of Bolsa Familia. We benefited from valuable comments from our colleagues Peter Herculano de Souza, Miguel Foguel and Fabio Soares. Finally, we are grateful to Italo Cabral de Souza for his assistance in processing the 2006 PNAD.
The objective of this study is to assess the impact of CCT programmes such as the PBF on the composition of the occupied population among the formal and informal sectors. In particular, the goal is to analyse to what extent the PBF distorts the occupational choice of beneficiaries in the sense of making them more likely to opt for an informal occupation.

The motive behind this investigation is the idea that income from informal employment is less visible to the institution managing the programme than income from formal employment. Thus it is possible that beneficiaries can migrate from an occupation in the formal sector to an occupation in the informal sector of the economy or simply have a higher likelihood of moving from unemployment/inactivity to an informal occupation.

This effect would be deleterious to society, for at least two reasons. First, a change in the composition of employment which reduces the share of the formal sector compromises the State’s ability to fund its policies, including those directly related to social welfare. Second, there is a lower probability of PBF beneficiaries leaving poverty while employed in the informal sector.

Brazil can be considered an excellent country for analysis, given the availability of accurate information on the status of both occupation (formal or informal) and the household vis-à-vis eligibility and participation in the PBF (beneficiary or non-beneficiary).

There is, however, a major challenge in assessing the PBF’s effects on the adult labour supply. Participation in this type of programme is voluntary. Therefore, the group of beneficiaries may differ in certain aspects from the group of non-beneficiaries, which might affect both participation and the choice of occupation. This makes it difficult to find a comparison group that resembles the treatment group.

Our strategy for identifying the PBF’s effect on occupational choice seeks to isolate the programme’s real effect from differences in the unobservable characteristics of individuals. As a source of identification, we used a discontinuity in the PBF eligibility rule, which is to limit the age of the children at the beginning of the school year (which, in Brazil, coincides with the calendar year). This type of strategy is known as Regression Discontinuity Design (RDD). In particular, since eligibility does not coincide with participation in the programme, the explored methodology uses the case known as a fuzzy RD. Our main identification hypothesis is to assume that the unobservable characteristics of adults in families whose youngest child reaches the age threshold for eligibility shortly before the beginning of the school year are very similar to those of families whose youngest child reaches the eligibility age threshold shortly after the beginning of the school year. This is considered a weak assumption, given the randomness component involved in determining an individual’s exact date of birth. We also carried out tests whose results are consistent with the validity of this hypothesis.

Empirical evidence of the impact of CCT programmes on the occupational choices of adult programme beneficiaries is still incipient. What we do have are studies estimating the impact on the labour supply of individuals in a disaggregated manner for occupation type (Skoufias and Di Maro, 2008; Ribas and Soares, 2011; and Brauw et al., 2012). These three papers use some version of the difference-in-differences estimator. The identification hypothesis in these works, therefore, is that the unobservable characteristics of either individuals or a group of individuals that influence the selection of the programme are fixed in time.
The result found by Skoufias and Di Maro (2008) for Mexico indicates an effect on the participation of self-employed individuals immediately after the implementation of the programme. However, this effect disappears shortly thereafter. The results of the work on the PBF identify a decrease in the participation in the formal sector (Ribas and Soares, 2011), as well as an increase in working hours within the informal sector (Brauw et al., 2012).

Our results do not indicate that the PBF has an impact on the probability that an individual will take up an informal occupation. It is worth mentioning that this result appears in estimates both in a sample of household heads and in what we will call secondary jobs — that is, those who contribute at home with the second largest source of income from work, secondary to the income from the main occupation held by the head of household.

This paper is organised in four sections, in addition to this introduction and a final section devoted to concluding remarks. Section 2 presents the PBF rules, including eligibility criteria and benefit amounts. Section 3 describes the econometric procedures adopted for the evaluation of the PBF’s impact on the composition of the labour market. The database and the construction of our sample are presented in Section 5, which also provides some descriptive statistics. The main econometric results are presented in Section 6.

2 PBF ELIGIBILITY CRITERIA

Programme eligibility depends on two main criteria. The first is associated with socio-economic status as measured by per capita household income (PCHI) — the sum of the gross income earned by all family members divided by the total number of individuals in the household. The second criterion is linked to family composition, in particular to the age of the youngest child. The PBF also requires the recipient to comply with conditionalities associated with child health and education.5

In September 2006, two household groups were considered eligible. The first group was composed of households with monthly PCHI between R$50.01 and R$100.00 (below the poverty line at the time) provided they had a household member who was a pregnant woman, a nursing mother or a child or adolescent aged 0–15 years old. This group received a variable benefit, depending on the number of members in the situations listed above, up to a limit of R$45.00. The other group consisted of families in extreme poverty, whose PCHI was less than or equal to R$50.00 monthly. These families would receive a basic benefit of R$50.00, regardless of their composition, and a variable benefit if there were dependents among the family members.6 The maximum amount of PBF benefits that an extremely poor family could receive was R$95.00.

Despite several studies that seek to assess the PBF by exploring the condition of eligibility based on the PCHI, in this paper we chose to explore the eligibility condition based on the age of the youngest child. As we will see later, our methodology depends, therefore, on individuals not being able to manipulate the value of the variable of the eligibility criteria chosen. Given the existence of a birth certificate in Brazil, it seems more reasonable to assume that there is no way to manipulate a child’s age than it is to assume that there is no way to manipulate the PCHI. This argument is an immediate consequence of the fact that the income of an informal occupation can be hidden from those responsible for running the PBF, unlike what happens with the income derived from formal occupations.7
It is important to note how household selection takes place within the programme. The selection of PBF beneficiary households takes place under the aegis of the Ministério do Desenvolvimento Social e Combate à Fome (MDS — Ministry of Social Development and Fight Against Hunger), the Caixa Economica Federal (CEF — Federal Savings and Loans Bank) and the municipalities. The Secretaria Nacional de Renda de Cidadania (SENARC — National Secretariat of Citizenship Income), under the MDS, is the agency responsible for the programme. Among other important actions, SENARC establishes the criteria for selecting beneficiaries — that is, those who receive the benefit and how much they shall receive. It also defines the questionnaire used to complete an administrative file with all potential beneficiaries (Cadastro Único) and the criteria for suspending and cutting benefits, among several other operational parameters. The role of the CEF is quite significant for the PBF. In addition to being the operator and payment agency, it is responsible for processing the information collected by municipalities that makes up the Cadastro Único, as well as calculating the PCHI and how much each family should receive, and paying the monthly benefit through magnetic debit cards. The most important role of municipalities is the responsibility for identifying potential beneficiary families, by gathering information that will be fed into the Cadastro Único.

Sátyro and Soares (2009) argue that, ultimately, municipal officers are the ones who decide who will or will not be a potential PBF beneficiary, in the sense that all the information handled by the CEF or analysed by SENARC is collected by them. According to the authors, this “is a strategic role — without committed and well-managed municipalities, the very functioning of PBF would be compromised” (Soares and Sátyro, 2009: 17). It is clear, then, that given the way the PBF is managed, beneficiaries tend to have an incentive to work in the informal sector (with their incomes hidden from government agencies) and still remain eligible for the PBF benefit.

In the next section, it will become evident that the process of excluding households that become ineligible is more important than the process of adding new beneficiary households. In particular, the process of excluding households that become ineligible according to the criterion of the age of the youngest child is central to our analysis. According to PBF bylaws, exclusion does not occur immediately following the 16th birthday of the youngest child but, rather, after the end of his/her school year.

As such, we shall base our empirical strategy — to be explained in the next section — on comparisons of households that appear in the 2006 PNAD and in which the youngest child was about to turn 16 years old on 31 December 2005 with households in which the youngest child had just turned 16 years old by 31 December 2005.

3 METHODOLOGY

3.1 THE IDENTIFICATION PROBLEM AND ITS CONSEQUENCES FOR ESTIMATION

Identifying the PBF’s effect on occupational choice is not a trivial task, given that there is room for self-selection of individuals in the programme. This problem arises when the probability of an individual entering the programme depends on unobservable characteristics that may also influence their occupational choice.
The previous section provides evidence that there is room for this kind of problem in the case of the PBF. Basically, the probability of selection will be greater for an eligible household that is better capable of becoming visible to the municipal agents.

For a better view of the problems arising from self-selection based on unobservable characteristics, consider the following regression model relating the occupational choice of the head of household ‘i’ (Yi) to the age of the youngest child on the last day of the previous year (Ii), as well as participation in the PBF (Ti):10

\[Y_i = \alpha_1 + \beta_1 (I_i - c) + \lambda_1 T_i + \gamma_1 T_i (I_i - c) + \delta_1 X_i + \varepsilon_i , \]

(1)

where c is a normalisation constant representing the age limit of the youngest child to the eligibility of the household (in our case, 16 years, exactly, on 31 December 2005), and X denotes any controls to be inserted in the model. Our parameter of interest is \(\lambda_1 \), which represents the effect of programme participation on occupational choice.

The fact that there is self-selection in the PBF, based on unobservable characteristics, leads to the following property of this model:

\[E[\varepsilon_i | T_i] \neq 0 \]

(2)

Consequently, \(\lambda_1 \) cannot be identified by comparing the occupational choices of those who participated (T=1) and those who did not participate (T=0), even when keeping the other explanatory variables of the model (X) constant. This is because, according to (2), when T is varying, \(\varepsilon \) is also varying. Therefore, we will not be able to separate the effect on Y arising from the variation of T from that arising from the variation in \(\varepsilon \). In terms of estimation, this means that \(\lambda_1 \) cannot be estimated consistently by ordinary least squares.

In this case, the ideal scenario is to have some source of variation in T among individuals that does not affect \(\varepsilon \). In other words, it would be interesting to have a variable at hand that affects the decision of individuals to participate in the programme and which is not related to unobservable characteristics of individuals. This variable serves as an instrument for the correct identification of our parameter of interest, because we do not want to know the impact of this variable, but its variation is used to shift participation, while keeping everything else constant.11

Generally, we resort to an exogenous eligibility criterion as the instrument for the correct identification of the treatment. This exogenous criterion may be due to a random draw or a discontinuity in the rule of eligibility. In the latter case, we have what is conventionally called a fuzzy regression discontinuity12 in literature.

As discussed in the previous section, there is a discontinuity in the PBF’s eligibility rule, which prompts us to choose the fuzzy regression discontinuity approach. The identification strategy associated with this approach can be viewed in Figure 1, which shows participation in the programme (T) in September 2006 (date of the 2006 PNAD) as a function of the gap that separates the age of the youngest child from the 16-year mark as of 31 December 2005.
Thus, positive (negative) values on the horizontal axis denote households where the youngest child had not yet (already had) turned 16 years of age by 31 December 2005 and were, therefore, (in)eligible for the programme in 2006.

Each point on the graph represents average values for household groups that were grouped according to the age of the youngest child and, therefore, also in accordance with the aforementioned gap. The aggregation used two-month intervals, so that the point at 1 on the horizontal axis shows the share of beneficiaries among households whose youngest child was less than two months away from turning 16 years of age, by 31 December 2005; as opposed to the comparison between households with young children who recently turned 16 or who will turn 16 shortly after 31 December 2005 brings noticeable differences to the likelihood of participating in the programme in 2006. Reading Figure 1 from the right to the left clearly shows that participation in the programme drops sharply around the mark corresponding to the threshold for one of the eligibility criteria. Reasonably assuming that everything else should be very similar between these two household groups (including the values of ε), the age of the youngest child around 16 years is the exogenous variation that shifts T, keeping everything else constant, and, therefore, allows us to identify the effect of the PBF.

FIGURE 1

Share of Households that Receive the PBF Benefit

![Graph showing the share of households receiving the PBF benefit based on the age of the youngest child.](source: 2006 PNAD)

In the remainder of this section we will discuss identification more precisely. A number of contributions have been made to guide researchers on the assumptions required to identify the effect of a programme in this context, as well as some operational procedures for its estimation. Our intention is to follow the recommendations of this recent literature, which can be accessed in the papers by Imbens and Lemieux (2008) and Lee and Lemieux (2010), among other sources.
3.2. THE SOLUTION VIA DISCONTINUITY

The identification and, consequently, the consistent estimation of parameter λ_1 in equation (1) require some additional assumptions. For didactic purposes, we assume, at first, that the PBF uniformly affects the occupational choice of individuals (a context that is often denoted in literature as ‘homogeneous effects’). In this context, the following properties for households where young children are in an age around c are sufficient to identify our parameter of interest:

\[
E[\varepsilon_i | I_i = c^-] = E[\varepsilon_i | I_i = c^+] = 0
\]

\[
E[T_i | I_i = c^-] \neq E[T_i | I_i = c^+]
\]

In the case of the above equations, c^- (c^+) denotes ages that are very close to c but smaller (larger) than the exact value. In our context c^- (c^+) represents households with young children aged slightly under (over) 16 on 31 December 2005.

The hypothesis represented by (3) has the following interpretation within the context of this article: the ability to become visible to municipal agents does not differ between a group of households with the youngest child about to turn 16 on 31 December 2005 and another group where the youngest child has recently turned 16 on that same date. The hypothesis represented by (4) requires that these same two groups of households differ with respect to the probability of selection for the programme. It is expected that the group with the youngest child who has not yet turned 16 will have a higher probability of selection.

We have postponed a more detailed discussion on the validity of these hypotheses to the next section. For now, we assume that both are valid, and move on to the presentation of our identification strategy. From equation (1), it is easy to see that identification comes from the following ratio:

\[
\lambda_1 = \frac{E[Y_i | c^-] - E[Y_i | c^+]}{E[T_i | c^-] - E[T_i | c^+]}
\]

This strategy is equivalent to the use of an instrumental variable. In this case, eligibility works as an instrument for participation. In intuitive terms, it explores the contrast between individuals with ages that are very close to the eligibility threshold. The variation in eligibility for these individuals induces an exogenous variation in PBF participation which, in turn, induces a causal effect on the probability of being employed in the formal sector.

For operational purposes, we will use a sample restricted to households with a youngest child aged around c, given the unique role of these households in the identification of the parameter of interest. In this sample, we apply the two-stage least squares estimator, where the first stage may be represented by the following equation:

\[
T_i = \alpha_2 + \beta_2(I_i - c) + \lambda_2D_i + \gamma_2D_i(I_i - c) + \delta_2X_i + \zeta_i
\]
where D_i indicates whether the household is eligible through the age criterion — i.e.

\[D_i = 1(I_i < c) \]

(7)

To put it in another way, in our strategy, D_i serves as an instrument for T_i. Another important issue from the operational perspective is what should be considered ‘near the age limit for eligibility’. For this definition, we follow the procedure suggested by Imbens and Kalyanaraman (2009), noting that such a procedure is proposed for the case of sharp discontinuity. In the case of fuzzy discontinuity, as in our estimation, there is a procedure designed to identify the optimal size of the window, but it is known that this size must be a little larger than that indicated for the sharp case.

3.3 HETEROGENEOUS EFFECTS AND INTERPRETATION OF THE IDENTIFIED PARAMETER

In the literature on impact assessment, it is common to relax the hypothesis of homogeneous effect, allowing the benefits of the programme in question to vary between individuals. Thus, equation (1) shall present λ_{1i} as opposed to λ_1. Nothing changes for the matter of identification and estimation procedures described previously.

However, there is a significant change in the interpretation of the parameter identified by the right-hand side of the equation (5) and estimated by instrumental variables. The identified parameter, denoted by LATE, becomes the expected value of the effect of the programme for a subgroup of the population known as ‘compliers’. This subgroup consists of households whose participation is defined by eligibility. In other words, they participate when they are eligible and do not participate when they are not. In our article, this translates into households participating in 2005 with children who are 16 years old in December and who do not participate in 2006, when they become ineligible.13

Besides the changed interpretation, the environment with a heterogeneous effect also requires two additional identification hypotheses.14 The first, known as ‘monotonicity’, requires that there be no household that decides to participate in the programme when it is not eligible and decides not to participate when it is eligible (what literature calls ‘defier’ behaviour). That is, besides the compliers, we admit the existence of only two other types of households for whom participation is not guided by eligibility: the one that always participate regardless of being eligible or not (‘always taker’) and the one that never participate regardless of being eligible or not (‘never taker’).

The second additional hypothesis is more abstract and it is known as ‘independence’. In our context, this hypothesis states that the potential outcomes of participation and occupational choice conditioned to each of the possible eligibility statuses (eligible or not) is independent of the eligibility status actually observed for the household. For example, an eligible household which actually participates in the programme would have an unobserved participation result if it were not eligible. The hypothesis in question requires that these two potential outcomes of participation, when it is eligible and when it is not, be independent of whether the household is eligible or not. The same goes for potential occupational choices associated to the condition of being eligible or not.
It is important to note that these two additional hypotheses are not testable, unlike the first two cases described in Section 3.2, which will be considered again in the next section.

4 PRELIMINARY EMPIRICAL INFORMATION

4.1 DATA AND DESCRIPTIVE STATISTICS

As seen in the previous section, the implementation of our identification strategy requires the availability of household-level information about the children’s dates of birth, an indicator of the formality of the job held by the head of the household, about the second source of the household income and about receiving the PBF benefit. The 2006 PNAD, conducted by the Instituto Brasileiro de Geografia e Estatística (IBGE — Brazilian Institute of Geography and Statistics) and used in this study, contains this information.

The PNAD is an annual household survey that covers the entire country and collects information on the features of the homes and their residents. In particular, the information on the date of birth and job (in)formality were always present in the survey’s traditional module. In the 2006 PNAD, there is an additional module on the characteristics of households’ access to some income transfers from social programmes. In this additional module, there is a question specifically about the PBF. The 2006 PNAD surveyed 410,241 people in 145,547 households nationwide.

Regarding the definition of informality, we work with the one used in most studies on informality with Brazilian data, which distinguishes employees by having an employment registration signed by their employer and allocates all employers to the formal sector and the self-employed to the informal.

At this point of the analysis, the definition of our sample is subject to two constraints. The first restriction was imposed by our methodology, which makes exclusive use of observations around the threshold that defines eligibility. In our context, this means restricting the sample to households with the youngest child at around 16 years of age. The second filter refers to workers with problematic occupational insertions. We will comment on additional restrictions later.

Figure 2 shows the percentage of household heads employed in September 2006 whose occupation is informal, as a function of the gap in months (measured on 31 December 2005) that separates the age of the youngest child from his/her 16th birthday. This graph is constructed in the same way as Figure 1. Thus, positive (negative) values on the horizontal axis represent households (in)eligible for the programme throughout 2006 by the criterion of the age of the youngest child. And, as in Figure 1, the points on the graph represent average values of household groups that were grouped together according to the age of the youngest child, in two-month periods.

It is noted that the level of employment in the informal sector is quite similar between the two groups being compared. That is, among occupied household heads, the share working in the informal sector does not seem to vary with the household’s eligibility for the PBF. It is worth noting that the eligible group showed a significantly greater participation in the PBF than the ineligible group. Therefore, it is noted that eligibility influences participation, which, in turn, does not seem to influence informality. This result will be confirmed in our
estimates with the instrumental variable method, adapted to the context of fuzzy regression discontinuity. Before going to the results, however, we shall report some evidence that shows that the method is, indeed, adequate for our purposes.

FIGURE 2

Share of Informal Employment among Household Heads

Source: 2006 PNAD.

4.2 TESTING IDENTIFICATION HYPOTHESES

In summary, the identification of our parameter of interest relies on four hypotheses:

- condition of local exclusion (around c), represented by (3);
- validity of the instrument (also around c), represented by (4);
- monotonicity; and
- independence.

Ideally, we would like to be able to test the validity of all of them. However, the last two are not testable hypotheses. Therefore, the provision of evidence about the validity relies on the first two.

4.2.1 Validity of the instrument

The hypothesis of the validity of the instrument is easily tested, since it consists in comparing the conditional means of observed variables, as expressed in equation (4). The coefficient \(\lambda_2 \) in equation (6) captures exactly the difference between the two sides of equation (4).
Therefore, testing the significance of this coefficient is one way of testing the hypothesis of the instrument's validity.

Note that we are including in this sample a group with a high probability of behaving like an ‘always taker’, composed of households with PCHIs less than or equal to R$50.00. As stated earlier, this group is eligible regardless of the household’s age composition. Thus, the propensity to participate in the programme for this group of households may not vary with the age of the youngest child.

On the other hand, households with high PCHIs tend to behave like ‘never takers’, since the probability of being registered tends to be very low, regardless of the age of the youngest child. In fact, only 0.7 per cent of households with PCHIs over R$700.00 are PBF beneficiaries.17

These groups may hinder the identification of λ₁, since, as discussed in Section 3, the source of identification in our empirical strategy is the group of ‘compliers’. Therefore, the smaller the share of ‘compliers’ or greater the participation of ‘always takers’ and ‘never takers’, the lower the power of our identification strategy. In particular, a decrease in the share of ‘compliers’ tends to invalidate our second identification hypothesis, represented by (4).

As such, we tested this hypothesis with three different samples. In the first sample, we did not add any filters relative to what was mentioned in the previous section (filter I). In the second sample, we excluded households with PCHIs over R$700.00 (filter II). In the third sample, we excluded households with PCHIs lower than R$50.00 and over R$700.00 (filter III).

Table 1 reports the estimates for λ₂ in three pairs of columns corresponding to the three samples. In each pair of columns we report the coefficient estimates and their standard errors in the first column; the second statistic is in brackets below the first one.

<p>| TABLE 1 |</p>
<table>
<thead>
<tr>
<th>Instrument Validity Test (Household Head)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Sample</td>
</tr>
<tr>
<td>Source: 2006 PNAD.</td>
</tr>
<tr>
<td>Optimal Window</td>
</tr>
<tr>
<td>λ₂ (standard error)</td>
</tr>
<tr>
<td>λ₂ (bandwidth = 110) (standard error)</td>
</tr>
<tr>
<td>λ₂ (bandwidth = 125) (standard error)</td>
</tr>
<tr>
<td>λ₂ (bandwidth = 150) (standard error)</td>
</tr>
</tbody>
</table>

Source: 2006 PNAD.
The results in Table 1 indicate that of the 12 specifications being considered (four windows for each of three filters) only one coefficient is not significantly different from zero at the 95 per cent confidence level. In all other specifications, the estimates are positive and significantly different from zero — a result which supports the hypothesis that the eligibility criteria based on the age of the youngest child positively affects the propensity to participate in the programme, for households where the age of the youngest child was close to 16 on 31 December 2005. In other words, we have evidence that the propensity to benefit from the PBF drops significantly when the household does not meet the eligibility criteria for the PBF’s variable benefit.

In the second column of each pair of columns we report the window size used. As mentioned earlier, there is no indicated procedure to determine the optimal size of the window in the case of fuzzy discontinuity. Thus, we consider alternative sizes, given that the optimal size for the window, in the case of fuzzy discontinuity, should be slightly higher than that recommended in the case of sharp discontinuity. The four different window sizes considered produce the four lines of results. In the first line we consider the size recommended by the procedure for sharp discontinuity. In the other lines we consider larger windows: 10 per cent larger in the second line, 25 per cent larger in the third line, and 50 per cent larger in the fourth line. The indicated window sizes were around two months.

4.2.2 Condition of exclusion

The condition of exclusion around \(c \) is not so easy to test, since it involves the behaviour of a variable that has not been observed. This hypothesis requires the continuity of the unobservable variable around \(c \). There are two common procedures in the literature to provide indirect evidence about the validity of this hypothesis. In the first procedure, there is a search for evidence of continuity in the control variables \((x)\). It is expected that a sharp discontinuity in the observed variables should also be sharp in the case of unobserved variables.

Table 2 presents a comparison of certain observable characteristics of the household head and of the family as a whole, recorded in the 2006 PNAD among households where the age of the youngest child is slightly less and slightly more than 16 on 31 December 2005. To define the groups marked as eligible and ineligible, we used a radius of two months, as in the previous item. We also followed the tables in the previous section regarding the delineation of three distinct samples, according to the use of PCHI for this purpose.

In general, we can say that the numbers in a group never stray too far from the respective comparison group. For some variables such as age of the head of household and the number of people in the household, the proximity between groups is striking in any of the three samples considered. Even in the case of other variables, the values tend not to differ significantly between the eligible and ineligible groups. The biggest changes are recorded for variable geographical location and household income. Even the difference in this last variable is limited to the first sample only.

In the second procedure, to provide evidence regarding the validity of the condition of exclusion, the evidence is derived from the expected consequences on the behaviour of variables observed in a scenario where this assumption is no longer valid.
In our context, we can think of two types of scenarios where the condition of exclusion ceases to be valid:

- if the household manipulates information about the age of the youngest child; and
- if the household conceives another child when the age of the youngest child is approaching 16.

If the first scenario is correct, one would expect a discontinuity in the distribution of households according to the age of the youngest child, with a pronounced concentration of households with the age of the youngest child at slightly less than 16. Figure 3 shows a nonparametric estimation of the density function of the variable ‘gap’ restricted to the domain of -30 months to +30 months. The hypothesis of manipulation would gain force if there is an increase in the mass of the distribution immediately to the right of zero. The results do not seem to indicate that there is a relatively higher discontinuity around the age defined as the programme eligibility threshold. If there is some variation around zero, it goes in the opposite direction — that is, a mass increase to the left of zero.

That means that the evidence in this graph does not corroborate the hypothesis of manipulation of the information about the age of the youngest child. Added to this evidence is the fact that the programme agent asks for the birth certificates of beneficiary residents.

TABLE 2

Balancing — Characteristics of the Eligible and the Ineligible

<table>
<thead>
<tr>
<th></th>
<th>Total Sample</th>
<th>Filter I</th>
<th>Filter II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All households receiving the PBF benefit</td>
<td>Households with PCHI < R$ 700.00</td>
<td>Households with PCHI > R$ 50.00 and PCHI < R$ 700.00</td>
</tr>
<tr>
<td>Individual Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (% female)</td>
<td>77.2</td>
<td>78.2</td>
<td>78.5</td>
</tr>
<tr>
<td></td>
<td>75.5</td>
<td>77.6</td>
<td>77.1</td>
</tr>
<tr>
<td>Years of Schooling</td>
<td>6.8</td>
<td>6.0</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>6.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Age</td>
<td>45.3</td>
<td>44.8</td>
<td>44.8</td>
</tr>
<tr>
<td></td>
<td>44.4</td>
<td>43.7</td>
<td>43.6</td>
</tr>
<tr>
<td>Household Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of people in the family</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Residents in the NO/NE regions</td>
<td>38.7</td>
<td>39.9</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>40.6</td>
<td>42.4</td>
<td>38.4</td>
</tr>
<tr>
<td>Total per capita income</td>
<td>508.1</td>
<td>306.3</td>
<td>313.3</td>
</tr>
<tr>
<td></td>
<td>544.1</td>
<td>304.4</td>
<td>310.1</td>
</tr>
<tr>
<td>Number of observations</td>
<td>284</td>
<td>238</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>250</td>
<td>245</td>
</tr>
</tbody>
</table>

Source: 2006 PNAD.
In the second scenario considered above, we observed that only 0.09 per cent of households with children aged between 15 and 16 years have other children aged between 0 and 1 year. As such, the discontinuity in the definition of eligibility based on the age of the youngest child will be explored in this article as being exogenous.

6 MAIN RESULTS

Tables 3 and 4 show the main results of this work. These are the estimated values referring to the PBF’s effect on the probability of the main occupation held by the head of the household being informal, shown in equation (1) by coefficient λ_i. The tables follow the same pattern as the previous one, with filters that define the sample varying across the columns, and the considered window size for the age of the youngest child varying across the rows.

The point estimates of our parameters of interest are negative in all 12 situations, with results reported in the table (three samples for each of four window sizes). However, we cannot reject the hypothesis that all estimates may be zero at the 95 per cent confidence level (Table 3). That is, we were unable to identify any effect of the PBF on the propensity of household heads to have informal jobs.
TABLE 3
Impact of the PBF on the Household Head’s Choice of Occupation

<table>
<thead>
<tr>
<th>Source: 2006 PNAD.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total Sample</th>
<th>Filter I</th>
<th>Filter II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All households receiving the PBF benefit</td>
<td>Households with PCHIs < R$ 700.00</td>
<td>Households with PCHIs > R$ 50.00 and PCHIs < R$ 700.00</td>
</tr>
<tr>
<td></td>
<td>Coef.</td>
<td>Optimal Window</td>
<td>Coef.</td>
</tr>
<tr>
<td>Bolsa-Familia</td>
<td>-3.237</td>
<td>1.61</td>
<td>-2.417</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(3.329)</td>
<td></td>
<td>(1.480)</td>
</tr>
<tr>
<td>Bolsa-Familia (bandwidth = 110)</td>
<td>-2.339</td>
<td>1.77</td>
<td>-2.846</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(1.612)</td>
<td></td>
<td>(1.797)</td>
</tr>
<tr>
<td>Bolsa-Familia (bandwidth = 125)</td>
<td>-1.996</td>
<td>2.01</td>
<td>-2.607</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(1.387)</td>
<td></td>
<td>(1.875)</td>
</tr>
<tr>
<td>Bolsa-Familia (bandwidth = 150)</td>
<td>-1.122</td>
<td>2.41</td>
<td>-2.539</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(0.973)</td>
<td></td>
<td>(1.614)</td>
</tr>
</tbody>
</table>

We repeated the exercise to estimate the PBF’s effect on the probability of the secondary occupation of the household (which can be the secondary occupation of the household head or the main occupation of another household member) being informal. The results reported in Table 4 go in the same direction as those estimated for the household heads. That is, although the point estimate is negative, the programme has no impact on the household’s choice of secondary occupation between formal and informal jobs.

TABLE 4
Impact of the PBF on the Choice of Secondary Occupation

<table>
<thead>
<tr>
<th>Source: 2006 PNAD</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total Sample</th>
<th>Filter I</th>
<th>Filter II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All households receiving the PBF benefit</td>
<td>Households with PCHIs < R$ 700.00</td>
<td>Households with PCHIs > R$ 50.00 and PCHIs < R$ 700.00</td>
</tr>
<tr>
<td></td>
<td>Coef.</td>
<td>Optimal Window</td>
<td>Coef.</td>
</tr>
<tr>
<td>Bolsa-Familia</td>
<td>-1.196</td>
<td>1.74</td>
<td>-1.997</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(1.339)</td>
<td></td>
<td>(1.355)</td>
</tr>
<tr>
<td>Bolsa-Familia (bandwidth = 110)</td>
<td>-1.614</td>
<td>1.92</td>
<td>-1.970</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(1.363)</td>
<td></td>
<td>(1.366)</td>
</tr>
<tr>
<td>Bolsa-Familia (bandwidth = 125)</td>
<td>-1.304</td>
<td>2.18</td>
<td>-1.347</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(1.627)</td>
<td></td>
<td>(1.236)</td>
</tr>
<tr>
<td>Bolsa-Familia (bandwidth = 150)</td>
<td>-1.107</td>
<td>2.62</td>
<td>-1.481</td>
</tr>
<tr>
<td>(standard error)</td>
<td>(1.023)</td>
<td></td>
<td>(1.235)</td>
</tr>
</tbody>
</table>
7 CONCLUSIONS

In this paper we sought to identify the extent to which the PBF has influenced beneficiaries to take on informal jobs. Unlike what was found in the existing empirical literature, our results suggest that the programme has no impact on the occupational choice of beneficiaries between formal and informal jobs.

It is worth mentioning that this result is solid in a wide range of situations that we have considered. We used 12 separate household samples to estimate our parameter of interest. In addition, for each sample we estimated the effect of the programme on occupational choice regarding both the main occupation of the household head and the secondary occupation in the household. In all these situations, the estimate was statistically nil.

One of the major contributions of our article is the application of a method that allows us to deal with the problem of self-selection within the PBF based on unobservable characteristics. We exploited a discontinuity present in the eligibility criteria of the programme, about the age of the youngest child. We assumed that the discontinuity around a critical age value (16 years old) represents an exogenous variation in eligibility that could be accompanied by a variation in programme participation also around this critical value. This last variation would, in turn, identify the desired effect on the occupational choice of the household heads.

Finally, it is worth mentioning two additional observations. On the one hand, two of the four hypotheses behind our method are testable. We presented evidence in favour of both testable hypotheses, which makes us relatively confident of the suitability of the method to our context. On the other hand, the method restricts the identification of the PBF’s effect on the group of households with at least one child and whose youngest (or only) child is around 16 on 31 December 2005. Nothing prevents the effect from being different from what we reported for families with younger children.
REFERENCES

NOTES

1. In this regard, see Chapter 4 of Fiszbein and Schady (2009) for a review of the effects of CCT programmes on labour supply.
3. While the first study analyses Progresa, in Mexico, others analyse the PBF.
4. Teixeira (2010) as well as Marino and Mendes (2013) also conduct this type of analysis. However, they rule out, by assumption, the influence of unobservable factors in the selection of PBF beneficiaries.
5. In the case of child health, prenatal testing for pregnant women and medical care for nursing mothers between 14 and 44 years are required, in addition to paediatric monitoring of the growth and development of children aged up to six years. In the case of education, the conditionalities are associated with children’s enrolment and attendance at school.
6. Two other benefits were incorporated into the PBF after 2006: the Youth Variable Benefit and the Benefit to Overcome Extreme Poverty (BSP).
7. In practice, the municipal agents identify potential beneficiaries and can track the status of PBF beneficiary households in databases containing formal income sources, such as the Continuous Cash Benefit (BPC) and Annual Report of Social Information (RAIS) databases.
8. All the information regarding the management of the PBF are from Soares and Sátyro (2009).
9. The MDS was created in 2004 with the goal of promoting social inclusion, food and nutrition security, full social assistance and a minimum income to families living in poverty (http:///www/mds.gov.br).
10. We used the age on 31 December 2005 because on this date we are able to identify households whose youngest child’s age has recently crossed the border of eligibility (c), making those households ineligible in 2006, as well as households that remained eligible in 2006 because the age of the youngest child only crosses the border immediately after the turn of the year. These households will be crucial in our identification strategy, as will be detailed later.
11. Therefore, we can identify a causal relationship according to the definition usually applied by economists, in which the causality between variables X and Y can be identified if we observe the response of Y to a change in X, keeping everything else constant.
12. The term ‘fuzzy’ refers to the relationship between participation and eligibility, which is not deterministic in the case of sharp regression discontinuity.
13. There is a discussion in the literature about how interesting the identification of a valid parameter is for such a restricted group (see Heckman, 1997). However, in our case, it can be argued that it is of interest to identify this group in view of the change in the eligibility criteria that occurred in July 2008, which now considers eligible households with young children up to 17 years.
14. The work of Imbens and Angrist (1994), which coined the term ‘LATE’, presents a more technical discussion about the identification of this parameter. The book by Angrist and Pischke (2009) provides a more intuitive approach to the same topic.
15. The question is: ‘In September 2006, did a resident of this household receive money from the social programme Bolsa Familia?’, followed by these possible answers: 1) Yes; 2) No.
16. We classified as employed during the reference week individuals who carried out any paid work during it, those who carried out any unpaid work in that week for at least 15 hours, and those who have paid jobs from which they are temporarily away. Individuals who carried out any work for their own consumption or construction during the reference week are not considered here as employed.
17. Usually, the ‘always taker’ and ‘never taker’ groups are not easily identifiable; therefore, this procedure of restricting the sample is unusual. Note that we are taking advantage of the two-dimensional nature of the PBF’s eligibility rule (age composition and PCHI) to identify the ‘never takers’.
18. The estimate was achieved through the Kernel method with Epanechnikov weighting.
19. It can be argued that there is more interest, on the part of the households, to manipulate such information in front of a programme agent than in front of an IBGE interviewer. However, since the 2006 PNAD collected information on the PBF, and the IBGE is a government agency, it is possible that a household prone to manipulating information in front of programme agents showed the same likelihood to do so in front of an IBGE interviewer.
20. Hypothetically, there would be yet another kind of attitude that could compromise the exogenous character that we attribute to the criterion based on the age of the youngest child, which is changing the age at which children leave home. In particular, it would be a problem for our analysis if the children left home below the age limit for eligibility in an environment without the PBF or started to postpone leaving to maximise the period during which they receive the benefit. For the purposes of this hypothetical situation, we assume that the probability of the children leaving home before age 16 is negligible.